
Wording for class template argument deduction from inherited
constructors

Timur Doumler (papers@timur.audio)

Document #: P2582R1
Date: 2022-05-20
Project: Programming Language C++
Audience: Core Working Group

Abstract

This paper provides wording for class template argument deduction from inherited constructors.
See [P1021R6] for rationale.

1 Proposed wording
The proposed changes are relative to the C++ working draft [N4910].
In [over.match.class.deduct], append to paragraph 1 as follows:

except that additional parameter packs of the form Pj... are inserted into the parameter
list in their original aggregate element position corresponding to each non-trailing aggregate
element of type Pj that was skipped because it was a parameter pack, and the trailing sequence
of parameters corresponding to a trailing aggregate element that is a pack expansion (if any)
is replaced by a single parameter of the form Tn....
In addition, if C is defined and inherits constructors ([namespace.udecl]) from a direct base
class denoted in the base-specifier-list by a class-or-decltype B, let A be an alias template
whose template parameter list is that of C and whose defining-type-id is B. If A is a deducible
template ([dcl.type.simple]), the set contains the guides of A with the return type R of each
guide replaced with typename CC<R>::type given a class template
template <typename> class CC;

whose primary template is not defined and with a single partial specialization whose template
parameter list is that of A and whose template argument list is a specialization of A with the
template argument list of A ([temp.dep.type]) having a member typedef type designating a
template specialization with the template argument list of A but with C as the template.
[Note: Equivalently, the template parameter list of the specialization is that of C, the template
argument list of the specialization is B, and the member typedef names C with the template
argument list of C. —end note]

1

mailto:papers@timur.audio

In [over.match.class.deduct], add the following example:

[Example:
template <typename T> struct B {

B(T);
};

template <typename T> struct C : public B<T> {
using B<T>::B;

};

template <typename T> struct D : public B<T> {};

C c(42); // OK, deduces C<int>
D d(42); // Error: deduction failed, no inherited deduction guides

B(int) -> B<char>;
C c2(42); // OK, deduces C<char>

template <typename T> struct E : public B<int> {
using B<int>::B;

};

E e(42); // Error: deduction failed, arguments of E cannot be deduced from guides introduced

template <typename T, typename U, typename V> struct F {
F(T, U, V);

};

template <typename T, typename U> struct G : F<U, T, int> {
using G::F::F;

}

G g(true, ’a’, 1); // OK, deduces G<char, bool>

—end example]

In [over.match.best.general], insert as follows:

— F1 and F2 are rewritten candidates, and F2 is a synthesized candidate with reversed order
of parameters and F1 is not [Example:

struct S {
friend std::weak_ordering operator<=>(const S&, int); // #1
friend std::weak_ordering operator<=>(int, const S&); // #2

};
bool b = 1 < S(); // calls #2

—end example] or, if not that,
— F1 and F2 are generated from class template argument deduction ([over.match.class.deduct])

for a class D, and F2 is generated from inheriting constructors from a base class of D while
F1 is not, and for each explicit function argument, the corresponding parameters of F1 and
F2 are either both ellipses or have the same type, or, if not that,

— F1 is generated from a deduction-guide ([over.match.class.deduct]) and F2 is not, or, if not
that,

2

2 Known issues
The mechanism for class template argument deduction from inherited constructors proposed here
relies on the existing mechanism for class template argument deduction from alias templates. Core
issue [CWG2467] should be expanded to include additional instances of the problem introduced by
this paper.

Document history

— R0, 2022-05-15: Initial version.

— R1, 2022-05-20: Wording changes following CWG review.

Acknowledgements
Many thanks to Hubert Tong for his help with fixing the wording.

References

[CWG2467] Richard Smith. Core Defect 2467: CTAD for alias templates and the deducible check.
https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#2467, 2019-08-
12 (accessed 2022-05-20).

[N4910] Thomas Köppe. Working Draft, Standard for Programming Language C++. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf, 2022-03-17.

[P1021R6] Mike Spertus, Timur Doumler, and Richard Smith. Filling holes in Class Template
Argument Deduction. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2022/p1021r6.html, 2022-05-15.

3

https://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#2467
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/n4910.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1021r6.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1021r6.html

	1 Proposed wording
	2 Known issues
	References

